

SMEC INTERNAL REF. 3002844

Runway 12/30 threshold displacement Study

Safety Case Report - Final 1.1

Project Reference No. 3002844
Prepared for: Canberra Airport
27 June 2022

Through our specialist expertise, we deliver advanced infrastructure solutions for our clients and partners.

Leveraging our 70-year history of delivering nation-building infrastructure, we provide technical expertise and advanced engineering services to resolve complex challenges.

Through our network of global specialists collaborating with local partners, we connect you with the best teams and capabilities to deliver innovative and sustainable solutions.

We're redefining exceptional

Document Control

Document Type	Runway 12 threshold displacement Study - Final Report
Project Title	Runway 12 threshold displacement Study
Project Number	3002844
File Location	X: \backslash Projects $\backslash 30028 \backslash 3002844$ Runway 12-30 threshold displacement $\backslash 200$ Detailed Design $\backslash 215$ Deliverables
Revision Number	1.1

Revision History

Revision No.	Date	Prepared By	Reviewed By	Approved for Issue By
Draft 2.0	$8 / 04 / 2022$	Rene Vandenbroucke	Mike Thompson	Mike Thompson
Draft 3.0	$19 / 05 / 2022$	Rene Vandenbroucke	Mike Thompson	Mike Thompson
Draft 4.0	$27 / 05 / 2022$	Rene Vandenbroucke	Mike Thompson	Mike Thompson
Final 1.0	$10 / 06 / 2022$	Rene Vandenbroucke	Mike Thompson	Mike Thompson
Final 1.1	$27 / 06 / 2022$	Rene Vandenbroucke		Mike Thompson

Issue Register

Distribution List	Date Issued	Number of Copies
Canberra Airport	$19 / 05 / 2022$	1 PDF
Canberra Airport	$27 / 05 / 2022$	1 PDF
Canberra Airport	$10 / 06 / 2022$	1 PDF
Canberra Airport	$8 / 07 / 2022$	1 PDF

SMEC Company Details

Approved by	Mike Thompson - Principal Engineer - Airports
Address	Level 9, 12 Moore Street, Canberra City ACT 2601
Phone	+61262341937
Email	Mike.thompson@smec.com
Website	www.smec.com
Signature	

The information within this document is and shall remain the property of Canberra Airport

Important Notice

This report is confidential and is provided solely for the purposes of a safety case investigation in relation to the potential displacement of the Runway 12 landing threshold at Canberra Airport. This report is provided pursuant to a Consultancy Agreement between SMEC Australia Pty Limited ("SMEC") and Canberra Airport Pty Ltd, under which SMEC undertook to perform a specific and limited task for Canberra Airport Pty Ltd. This report is strictly limited to the matters stated in it and subject to the various assumptions, qualifications and limitations in it and does not apply by implication to other matters. SMEC makes no representation that the scope, assumptions, qualifications and exclusions set out in this report will be suitable or sufficient for other purposes nor that the content of the report covers all matters which you may regard as material for your purposes.

This report must be read as a whole. The executive summary is not a substitute for this. Any subsequent report must be read in conjunction with this report.

The report supersedes all previous draft or interim reports, whether written or presented orally, before the date of this report. This report has not and will not be updated for events or transactions occurring after the date of the report or any other matters which might have a material effect on its contents, or which come to light after the date of the report. SMEC is not obliged to inform you of any such event, transaction or matter nor to update the report for anything that occurs, or of which SMEC becomes aware, after the date of this report.

Unless expressly agreed otherwise in writing, SMEC does not accept a duty of care or any other legal responsibility whatsoever in relation to this report, or any related enquiries, advice or other work, nor does SMEC make any representation in connection with this report, to any person other than Canberra Airport Pty Ltd. Any other person who receives a draft or a copy of this report (or any part of it) or discusses it (or any part of it) or any related matter with SMEC, does so on the basis that he or she acknowledges and accepts that he or she may not rely on this report nor on any related information or advice given by SMEC for any purpose whatsoever.

Contents

1. Introduction 4
2. Existing Runway $12 / 30$ Dimensions 4
3. Existing Runway $12 / 30$ Operations 5
3.1 Historical Use 5
3.1.1 Overall activity 5
3.1.2 Royal Australian Air Force VIP transport squadron 8
3.1.3 Air Ambulance 8
3.2 Future Use 8
4. Analysis of displaced Runway 12 end 8
5. Aircraft performance 9
5.1.1 Take-offs9
5.1.2 Landings 10
6. Impact on Runway 12/30 operations 10
6.1 Runway 12 landings 10
7. Required infrastructure and visual aids changes 11
8. OLS implications on existing CA airport operations and obstacles/terrain 11
9. Safety Case 11
9.1 Risk Assessment Categories 11
9.2 Risk Analysis 12
10. Conclusion and Safety Assessment Outcome 12
11. Acronyms 12
Appendices
OLS Obstacles 2
Risk Matrix
Figures
Figure 2-1: Taxiway locations 5
Figure 4-1: Runway distances 9

Tables

Table 2-1: Runway distances (m) 4
Table 2-2: Taxiway distances (m) from existing runway ends 5
Table 3-1: Aircraft types using Runway 12/30 6
Table 3-2: Aircraft movements from the 12-runway end 7
Table 4-1: Proposed Runway Distances 8
Table 4-2: Revised distance from the taxiway intersections 9
Table 5-1: Revised landing distances from the proposed threshold relocation 10
Table 9-1: Levels of Risk 11
Table 11-1: Acronyms 12
Table 9-2: Relocation Risk Assessment. 13

1. Introduction

Canberra Airport (CA) has two runways; the primary Runway $17 / 35$ is 3,283 metres (m) long and is aligned in the north-south direction and an intersecting Runway 12/30 which is aligned in the east-west direction.

In accordance with its Master Plan CA is considering displacing the Runway 12 approach threshold Runway 12/30 by 360 m .
"Aircraft using Runway 12 arrival and Runway 30 departure are limited to light aircraft, less than 5.7 tonne (MTOW), a result of the constraints of the nearby Canberra Noise Abatement Area. In the medium term 5-10 years, the use of Runway $12 / 30$ may be restricted to Runway 30 arrival and Runway 12 departure on a shortened runway length."
"In the short term, 1-3 years, and subject to further studies, the landing point for Runway 12 arrival will be moved by displacing the threshold up to 450 m east of the existing threshold. This will mean aircraft on arrival to the displaced threshold will be higher over the new Majura Parkway and the now duplicated Majura Road. The current lower height street lighting under the Runway 12 arrival over the Majura Parkway compared to the balance of street lighting on the Parkway points to a need for a short-term safety improvement supplied by a displaced threshold."
(extract from CA's 2020 Master Plan (7.5, last para p107 and first para p108):
CA has engaged SMEC to identify operational impacts and infrastructure changes required to facilitate and mitigate operational risks associated with this change.

2. Existing Runway $12 / 30$ Dimensions

Runway $12 / 30$ is classified as a Code 2 C runway. It is $1,679 \mathrm{~m}$ long and 30 m wide, is located within a 90 m strip, and has 60 m clearways at both ends. Runway 30 has an RNP non precision approach and so Runway $12 / 30$ is classified as an instrument non precision runway.

The 30 m width makes it suitable for use by aircraft with an OMWGS of up to but not including 9 m . The runway elevation is 1,849 feet (ft) at the 12 end and $1,886 \mathrm{ft}$ at the 30 end. The overall Runway $12 / 30$ grade is 0.7%.

There are medium intensity runway edge lights (operating at stages 1 to 3) at 90 m separation and the Runway 30 approach has a PAPI.
Its pavement has a PCN of 12, making it suitable for unlimited use by aircraft up to the Dash 8-300 (ACN 12) and restricted use by aircraft such as the Dash 8-400 (18), CL604 (14) and ATR 72 (14).

The existing Runway 12 distances are shown in Table 2-1.

Table 2-1: Runway distances (m)

Runway	TORA	TODA	ASDA	LDA

Source: Airservices Australia Runway distance supplement 02 December 2021
For Runway 12 there are two obstacles which are not considered when calculating the TODA gradient and STODA

- a fence 10.5 ft above and 19 m south-east of the runway strip end
- transient 16.2 ft and 10 m south-east of the runway strip

Runway 12/30 is intersected by seven taxiways and Runway 17/35 (Figure 1). Table 2-2 shows the distance from the taxiway intersections to the existing runway ends.

Figure 2-1: Taxiway locations

Table 2-2: Taxiway distances (m) from existing runway ends

Taxiway	Distance to Rwy 12 end
C1	0
K	555
H	555
B	555
G	839
Runway 17/35	1,098

3. Existing Runway 12/30 Operations

3.1 Historical Use

3.1.1 Overall activity

Runway $12 / 30$ has been used by a range of propeller and turbo prop aircraft. The following aircraft types are derived from data and flight paths Airservices Australia (AsA) provided for the CA 2019 ANEF as shown in Tables 3-1 and 3-2.

Aircraft operations associated with the runways include both take offs and landings. The overall data breakdown shown in section 3 has been determined by CA. The records show no jet aircraft operated on runway 12.

Table 3-1: Aircraft types using Runway 12/30

Runway 12		Runway 30		
Propeller	Turbo prop	Propeller	Turbo prop	Jet
Aerostar AEST	Beechcraft Models 200, 350, 90 King Air	Aerostar AEST	Beechcraft Models 200, 350,	Beech 400
Aquila A210	Cessna Models 208, 44	Beechcraft Models $\begin{aligned} & 23,33,35,36,55,58 \\ & , 76,95 \end{aligned}$	Cessna Models 208, 441	Boeing 737-800
Beechcraft Models $\begin{aligned} & 23,33,35,36,55,58 \text {, } \\ & 76 \end{aligned}$	Jet stream 32	$\begin{aligned} & \text { Cessna Models 24R, } \\ & 72 R, 77 R, 82 R, 82 S, \\ & 150,152,170,172, \\ & 180,182,185,206, \\ & 207,210,303,305 . \\ & 310,337,340,402, \\ & 404,414,421 \end{aligned}$	C27 Spartan	Bombardier Global express
Brumby BR60	Piper M600/SLS	Champion Sky-Trac CH7B	De Havilland Dash 8300 C	Canadian Regional Jet CL60
Bristell NG5	Socata TBM 700	CT4 Airtourer	Embraer 120	Cessna Models 500, 501, 510525
$\begin{aligned} & \text { Cessna Models 82, } \\ & \text { 150, 152, 172, 180, } \\ & \text { 182, 185, 206, 207, } \\ & 210,24 R, 310,337 \\ & , 340,404,414,72 R \end{aligned}$		Diamond Models 20, 40, 42	Jet stream 32	Lear jet 45
Champion Sky-Trac CH7B		Gippsland GA8 Airvan	Pilatus Models PC9, 12	
CT4 Airtourer		Grumman American AA5	Socata TBM 700B	
Diamond models 40, 42		Mooney 20	Swearingen Merlin 3	
Gippsland GA8 Airvan		$\begin{aligned} & \text { Piper Models 27, 28, } \\ & 28 \mathrm{~A}, 28 \mathrm{R}, 28 \mathrm{~T}, 30 \\ & 31,32,32 \mathrm{R}, 32 \mathrm{~T}, 34, \\ & 38,44 \end{aligned}$		
Grumman American AA5		Sirrus 20, 22		
Mooney 20		Jabiru		
Partenavia P. 68		Socata TB20		
$\begin{aligned} & \text { Piper Models 28A, } \\ & 28 \mathrm{R}, 28 \mathrm{~T}, 32 \mathrm{R}, 32 \mathrm{~T}, \\ & 27,28,30,31,32,34, \\ & 38,44 \end{aligned}$		$\begin{aligned} & \text { Van RV4, RV5, RV7, } \\ & \text { RV10, RV14 } \end{aligned}$		
Sirrus 20, 22				
Robin R200				
Jabiru				
Socata TB20				
Van RV7, RV10				

In 2018 the Runway 12/30 width was reduced from 45 m to 30 m making it unsuitable for operations by larger aircraft such as the B737. Currently the DH8-400 is not using Runway $12 / 30$ since it was reclassified as a Code 2C.

Table 3-2 shows the number of aircraft movements by operation and type for 12 runway end operations obtained from AsA noise reports for the period January 2016 to March 2021. ${ }^{1}$ While there is a discrepancy in the total between the aircraft operations and types, the data indicates that changes to the Runway 12 end will impact relatively few, mainly propeller, aircraft. The data shows that while the runway width was reduced from 45 m to 30 m in 2018 the overall low runway use has been consistent since 2016.

Table 3-2: Aircraft movements from the 12-runway end

Period	Operation		Aircraft Type		
	Arrival Rwy 12	$\begin{gathered} \text { Departure Rwy } \\ 30 \end{gathered}$	Propeller	Turboprop	Unknown
Jan - Mar 2016	133	146	229	21	29
Apr- June 2016	34	185	179	0	36
July- Sept 2016	28	162	158	0	48
Oct - Dec 2016	49	245	215	0	70
Jan - Mar 2017	99	147	192	13	39
Apr- June 2017	121	172	213	11	67
July- Sept 2017	24	208	177	0	45
Oct - Dec 2017	104	146	202	11	27
Jan - Mar 2018	106	212	276	0	46
Apr- June 2018	92	178	223	0	36
July- Sept 2018	36	211	217	0	24
Oct - Dec 2018	70	163	199	0	29
Jan - Mar 2019	128	186	231	0	78
Apr- June 2019	92	229	247	0	70
July- Sept 2019	48	222	203	0	65
Oct - Dec 2019	48	355	246	16	141
Jan - Mar 2020	136	211	197	47	102
Apr- June 2020	57	172	169	10	49
July- Sept 2020	42	211	209	5	38
Oct - Dec 2020	82	213	208	4	83
Jan - Mar 2021	112	203	253	4	57
Total	1,641	4,177	4,443	138	1,179
Monthly Average	26.05	66.30	70.52	2.19	18.71
2016 Total	244	738	781	21	183
2017 Total	348	673	784	35	178
2018 Total	304	764	915	0	135
2019 Total	316	992	927	16	354
2020 Total	317	807	783	66	272

[^0]
3.1.2 Royal Australian Air Force VIP transport squadron

CA is the base for RAAF (VIP) Squadron is 34. It operates Boeing 737 Business Jets and Dassault Falcon 7Xs. CA provides permanent dispensation for the Falcon to operate on Runway 12/30.

3.1.3 Air Ambulance

Runway $12 / 30$ is used on a 24 -hour basis as needed by the RFDS. The RFDS operates the King Air BEC350C and BEC200C in NSW.

3.2 Future Use

CA forecasts that the future use of Runway 12/30 will follow the historic pattern i.e., primarily by propeller and turbo prop aircraft. The RAAF VIP Squadron and the air ambulance will also continue to use the runways required. It is anticipated that the following aircraft will continue to use Runway $12 / 30$ in the foreseeable future. Additionally, the aircraft listed below will not be impacted by the relocated threshold, as these aircraft do not use Runway 12 for landings.

- Link Airways: Saab 340B plus
- Rex Airways: Saab 340B plus
- Qantas Link: Dash 8 200/300 variants
- Fly Pelican: Jetstream 32
- Royal Flying Doctor Service: King Air B350 C and B200 C variants
- 34 SQN Falcon $7 X$.

4. Analysis of displaced Runway 12 end

Displacing the Runway 12 approach threshold by 360 m will change the available Runway 12 landing distance as shown in Table 4-1 and Figure 4-1. There will be no impact on Runway 12 take-off distances or Runway 30 distances.

Table 4-1: Proposed Runway Distances

Runway	TORA	TODA	ASDA	LDA
12	1,679	1,739	1,679	1,319
30	1,679	1,739	1,679	1,614

Figure 4-1: Runway distances
Table 4-2 shows the distance from the taxiway intersections to the relocated Runway 12 end.

Table 4-2: Revised distance from the taxiway intersections

Taxiway	Distance to new Runway 12 end (m)
C1	NA
K	195
H	195
J	195
B	479
G	738
Runway 17/35	738

5. Aircraft performance

AsA records show that the largest aircraft operating on Runway 12/30 included the Boeing $737-800$, Bombardier Global Express, Canadian Regional jet CL60 and Dash 8-300. All these aircraft only landed on Runway 30 when it was 45 m wide and did their take-offs on Runway $17 / 35$. Since the runway width was reduced to 30 m the larger aircraft no longer use Runway12/30. Qantas has advised that similarly the Dash 8 -Series 400 will no longer use Runway 12/30.

The aircraft listed in section 3.2 will not be impacted by the relocated threshold, as these will not use the shortened Runway 12 for landings.

The Master Plan ANEF endorsed by AsA has identified all landings and take offs on Runway 12 will be by light propeller and turbo prop (BEC200, Cessna 441) aircraft.

5.1.1 Take-offs

As the Runway 12 take-off distance will not be impacted by the relocated threshold there will be no impact on future Runway 12 take offs by the light aircraft types nominated in the Master Plan.

5.1.2 Landings

Only landings on Runway 12 will be impacted by the relocated threshold. As future Runway 12 landings will be only by light propeller and turbo prop aircraft the reduced landing distance of $1,319 \mathrm{~m}$ will be suitable to accommodate future landings by these aircraft. Table 5-1 includes the estimated required landing distance for a range of aircraft considered likely to land on Runway 12.

Table 5-1: Revised landing distances from the proposed threshold relocation

Engine	Aircraft	Estimated Landing distance (m)
Single	BEC 33	300
	BEC36	450
	CNA150	200
	CNA172	160
	CNA182	411
	CNA206	450
	CNA210	450
	M20T	350
	PA28A	300
	PA32R	350
	PA38	200
Twin	AC50	400
	BEC200	540
	BEC350	820
	BEC58	600
	CNA404	600
	CNA414	720
	CNA441	350
	PA32	575

Source: https://contentzone.eurocontrol.int/aircraftperformance/default.aspx/GroupFilter=11

6. Impact on Runway 12/30 operations

6.1 Runway 12 landings

Relocating the Runway 12 approach threshold will reduce the amount of landing runway available and will also reduce the distance from the threshold to the intersecting taxiways.
The analysis of past activity (section 3) shows that the reduced landing length will have little impact on this runway's usability, as ASA records show that on average over the last four years there has been less than one landing per day on Runway 12.
The taxiway locations relative to the new threshold may impact some aircraft ground movements. Currently the closest taxiways, Kilo, Hotel and Juliet are 555 m from the Runway 12 end. With a 360 m relocated threshold the distance to taxiways Kilo, Hotel and Juliet is reduced 195 m , Bravo to 479 m , and Golf 738 m . The relocation of the threshold will make a direct runway exit via taxiways Kilo, Hotel and Juliet unlikely and will require most aircraft to back track along the runway or exit using taxiways Bravo and Golf.

As these aircraft will primarily park at the GA apron most will need to either back track along Runway 12/30 to reach Kilo or Hotel or exit onto other taxiways. Exiting on taxiway Bravo will require aircraft either to traverse the RPT apron area or travel a circuitous route to the GA parking area via Juliet.
Considering the historically low use of Runway 12 for arrival movements, which at an average of less than 1 movement per day (as shown in table 3-2), it is envisaged no congestion will occur when aircraft either backtrack onto Runway $12 / 30$ or exit via taxiway Bravo onto taxiway Charlie through to the GA apron.

7. Required infrastructure and visual aids changes

To comply with the requirements of MOS Part 139 the following infrastructure changes are required:

- Runway lights (reflecting the proposed threshold location)
- Line marking

8. OLS implications on existing CA airport operations and obstacles/terrain.

The current Runway $12 / 30$ is based on a MOS part 139 coding of 2 C . This has been determined based on a 30 m wide runway with a 90 m wide flight strip.
An Instrument Survey of the Approach, Take Off, Transitional, Visual Segment and Obstacle Assessment Surfaces at CA was carried out on the 18 February 2021. The results of this survey are included in Appendix 1. No obstacles were identified in the Runway 12 approach or transitional surfaces, or the Runway 30 take-off surface.
Additionally, a subsequent survey was conducted based on the Runway 12 threshold displacement of 360 m . In relation to the OLS permutations, this survey determines that any relocation of the threshold at 90 m increments from the existing runway end, out to 360 m , will remain obstacle free.
In relation to changes associated with the current part 139 MOS, the new standard requires an overall flight strip width of 140 m . Under the current strip dimensions no obstacles exist within the associated OLS, in relation to the Runway 12 approach, transitional and take-off protection surfaces. Currently the OLS is based on a 90 m wide strip, with critical consideration to the vertical stabilisers of the Code E aircraft. All are currently below the transitional surface and based on this, there are no plans to increase the Runway $12 / 30$ strip width and introduce obstacles where none currently exist.

9. Safety Case

9.1 Risk Assessment Categories

The safety risks associated with this concept can be categorised using the project risk matrix located in Appendix 2. Three categories of risk were identified: Acceptable, Tolerable, and Intolerable. The criteria for the outcomes of the levels are listed in Table 9-1.

Table 9-1: Levels of Risk

Risk Category	Criteria
Intolerable	The consequence is unacceptable under the existing circumstances. The work or activity shall not proceed at all.
Tolerable	After reasonable mitigating measures, have been taken to reduce the probability or the severity of the consequence, the work or activity may proceed upon endorsement from management.
Acceptable	The consequence is extremely improbable or not severe enough to be of a concern.

9.2 Risk Analysis

The following risk assessments (Table 9-2) consider how to mitigate risks associated by hazards introduced by the relocation of the Runway 12 threshold.

10. Conclusion and Safety Assessment Outcome

The risk assessment found that applying the current requirements of MOS part 139 would mitigate any risk associated with the relocation of the threshold. The application of these standards, in relation to new threshold markings, relocated runway/threshold end lights, including an update of the AsA AIP DAPs publications and Enroute and CA operational documents provides a safe and compliant outcome.

The assessment found that any impact on operations by displacing the Runway 12 approach threshold are acceptable.

11. Acronyms

Table 11-1: Acronyms

Acronym	Meaning
AsA	Airservices Australia
ASDA	Accelerate Stop Distance Available
CA	Canberra Airport
LDA	Landing distance available
MLW	Maximum landing weight
MOS	CASA Manual of Standards
MTOW	Maximum Take-off weight
OLS	Obstacle Limitation surfaces
TODA	Take off distance available
TORA	Take off runway available
STODA	Supplementary Take off distance available

Table 9-2: Relocation Risk Assessment

1 OLS Obstacles

CANBERRA AIBPORT

POINT CO－ORDINATES AIRPORT SURVEYS

Sunngo：Pail Pagenal
Dibe of Suves：10／Lacols

VERTICN DNTUAT ALLSTRALANIGICNT OATUM

		［ 000000.17		$575.34 .44 D$			
TWREOF RLWWAY Na	Sunben Point Na	DSSCRPTICN	$\begin{aligned} & \text { DSI: FADV } \\ & \text { END OF } \\ & \text { CUCARWAY } \\ & \hline \end{aligned}$	OFFSST FROU RWI Cl	0ast． RL	5	N
12	1	HW2ARDLICNT	4 Lan 2	2886 L	esasil	7013942	conman2．
1212121212	2	EUC TREE	20ab 4	26751	06322	201432.7	compuba 3
	1	EUC TREE	tays	175．JR	4．E．90：	7012324	comoner．7
	\pm	Wittic	120．t	THEL	统1绿	700ta7． 1	6000052．2
	5	SICNI	17.1	22.8 R	573.3	avemado	60000ta 4
$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	6	EUC TREE	trees	42 L	crabt	201502． 2	commona
	7	SICN	290	34 L	57 LES	700046．4	60900314
	＊	TUC TRET		trets L	陡， 14	Nor3es？	cenvasa 7
	9	EUC TREE	thees	2005 L	－84．23	70ta364	cemmasa 2
$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	45	FENCE	190	418 L	57 L 31	7006340	cowosela
	15	FENCE	$1{ }^{1} 6$	32 L	57 L 45	700641．2	cemoues？
	42	POONO 4 an Hgh	229	a31	50.314	woceata	6090006 7
	13	PONO 4．an Hgh	75	31.0 R	57435	Eveselt． 1	60000307
$\begin{aligned} & 12 \\ & 12 \end{aligned}$	14	POOD 4.2 n Hgh	20.7	42.0 L	590.11	7000254	comouns：
	45	POND 4．3n High	0.6	46.9 R	576.47	0006725	00006415

30 Taw－OE Splyy Oripin		50.0601963		S63．35 AHD			
$\begin{array}{\|c\|} \hline \text { TWNKOFY } \\ \text { R.WWWY } \\ \text { hin } \\ \hline \end{array}$	Sunwict Point Nin	DESCRPTICN	DST：FRDV END OF GVEARWAY	OFFSST FRDU RWT DL	OaST．	5	N
30	1	EUC TREE	22154	27151	024．64	nowistia	00027121
20	2	PLANE TRES	300.2	38.2 L	574.43	wilasia	6091037

17 Tax－Oe Splay Origin Coorifuties		E006ela 45	N 00.3046 .24	523.27 NHD			
TNOK－OEF RLOWAY Mr	Sunvinc Point Ha	DSSCRPTICN	$\begin{aligned} & \hline \text { DST. FRDU } \\ & \text { END DF } \\ & \text { CVCARWAY } \\ & \hline \end{aligned}$	OFFEST FRDU RWI AL	005T．	5	N
13	1	EUC TREE	t07\％L 1	1876	1014010	700tas 7	60NuS53：
15	2	DECIDUCLE TREE	6320	1274 L	50.30	avicatal	coamitas
17	2	EUC TREE	15064	2 SJTL	Sac． 11	waversa	coanmala
IT	4	DCCIDUOUS TREL	t225	35 TL	57000	Taxe27a	conne32 5
17	5	PNE TREE	15085	10.4 L	594.20	H0063．2	60anmas
47	6	LGETT PCLE	2750	512．18	574.05	waveat． 1	60491E4．
15	7	LGAT PCLE	205.3	2143 L	SM0．34	wacereal	60a9175．3
17	\pm	TERRNN	f075．2	TEEs F	123100	TETET7，	covnebli
17	9	PCPLAR TREE	3130	2815 R	580.90	accusil？	consiata
$\dagger 7$	40	PINE TREE	3420	2714 L	594.00	000085．	consosel 2
17	41	DECIDUOLS TREE	102.0	130.18	50.95	macaxs	councip．3
15	42	TREL	5315	1近 F		wavama	60anas24
17	13	DECIDUOUS TREE	907．1	2721 R	590.25	waytao．	cunsel4 7
17	45	POND－4．5n HeGH	277.3	1248 L	574．in	a0cenes	60．3910．3
$t 7$	17	POND－4．5n HeGH	2 mat	trea L ．	STY	macoulil	60n9r3ad

15 Taw－Oe Siplyy Origin Coorinutere		5000838	N W0nostilit	571.27 NHD			
TAKE－OFF RLOWAY Na	Suntyac Point Na	DSSCRPTICN	DST．FADV END OF CUCARWAY	CFFEST FRDU RWI Cl	0ast RL	5	N
28	1	EUC TREE	29142	NOH6L	Diest	maneosa	comeend
2	2	PCWERPPCLE	458.44	cose 2 R	70806	N0．0939？	cosmolla
2	2	FENCE CORUER	719	1602 L	572.74	Winass．	6002059
Z	4	AERUL DNELDG	111.5	HS H	5738	Wincere	60a8inifa
28	5	EUC TREE	Sathe	4015 T L	Hese 25	Wencobal	60asill 7
2	6	EUC．TREE	1275	15173 R	12534	N00652． 7	6taneal
2	7	FLAG PCEE	437.3	2154 f	50t	Emov7a 7	60anotas
2	0	EUC TREE	4605	MTER	71290	7005220	60anocia
2	9	WIND NDICATCR	1457	17511 R	SNa， 30	Wemen20	coaxchas

2 Risk Matrix

The following is the applicable quantitative and consequential breakdown for hazards associated with the relocation of the Runway 12 landing threshold.

Probability of Occurrence

Quantitative Definition	Meaning
Frequent	Likely to occur many times (has occurred frequently in the industry)
Occasional	Likely to occur sometimes (has occurred infrequently in the industry)
Remote	Unlikely, but possible to occur (has occurred rarely in the industry)
Improbable	Very unlikely to occur (not known to have occurred in the industry)
Extremely Improbable	Information not available

Severity of Occurrence (Consequence)

Aviation Definition	Meaning
Catastrophic	Death, fatal disease or multiple major injuries Aircraft /Equipment destroyed
Major	Serious injury or life-threatening occupational medical conditions Significant aircraft equipment damage Large reduction in safety margins
Hazardous	Injury to persons that require medical treatment or ill-health leading to disability Serious incidents/minor damage to aircraft Significant reduction in safety margins
Minor	Injury or ill-health requiring first-aid only
Negligible	Not likely to cause damages, injury ill-health

Risk Probability	Risk Severity				
	Catastrophic A	Major B	Hazardous C	Minor D	Negligible E
Frequent 5	I	I	I	T	T
Occasional 4	I	I	T	T	T
Remote 3	I	T	T	A	A
Improbable 2	T	T	T	A	A
Extremely Improbable 1	T	A	A	A	A

Member of the Surbana Jurong Group

[^0]: ${ }^{1}$ http://aircraftnoiseinfo.emsbk.com/canberra/home/

